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1 Introduction

Introduction
In this lecture, we continue our examination of techniques for examining and

adjusting model fit via residual analysis. We look at some advanced tools and
statistical tests for helping us to automate the process, then we examine some
well known graphical and statistical procedures for identifying high-leverage and
influential observations.

We will examine them here primarily in the context of bivariate regression,
but many of the techniques and principles apply immediately to multiple re-
gression as well.

2 Three Classes of Problem to Detect and Cor-
rect

2.1 Introduction

Three Problems to Detect and Correct
Putting matters into perspective, in our discussions so far, we have actu-

ally dealt with 3 distinctly different problems when fitting the linear regression
model. All of them can arise at once, or we may encounter some combination
of them.

Three Problems

• Nonlinearity. The fundamental nature of the relationship between the
variables “as they arrive” is not linear.



• Non-Constant Variance. Residuals do not show a constant variance at
various points on the conditional mean line.

• Outliers. Unusual observations may be exerting a high degree of influence
on the regression function.

Residuals Patterns, Nonlinearity, and Non-Constant Variance
Weisberg discusses a number of common patterns shown in residual plots.

These can be helpful in diagnosing nonlinearity and non-constant variance.

Residuals Patterns, Nonlinearity, and Non-Constant Variance

2.2 Graphical Examination of Nonlinearity

Graphical Examination of Nonlinearity
Often nonlinearity is obvious from the scatterplot.

However, as an aid to diagnosing the functional form underlying data, non-
parametric smoothing is often useful as well.
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The Loess Smoother
One of the best-known approaches to non-parametric regression is the loess

smoother.

This works essentially by fitting a linear regression to a fraction of the points
closest to a given x, doing that for many values of x. The smoother is obtained
by joining the estimated values of E(Y |X = x) for many values of x.

By fitting a straight line to the data, then adding the loess smoother, and
looking for where the two diverge, we can often get a good visual indication of
the nonlinearity in the data.

The Loess Smoother
For example, in the last lecture, we created artificial data with a cubic com-

ponent.

Let’s recreate those data, then add

• add the linear fit line in dotted red

• the loess smooth line in blue

• the actual conditional mean function in brown

The Loess Smoother

> set.seed (12345)

> x ← rnorm(150,1,1)

> e ← rnorm(150,0,2)

> y ← .6 ∗x^3 + 13 + e

> fit.linear ← lm(y˜x)
> plot(x,y)
> abline(fit.linear ,lty=2, col = ' red ' )
> l ines ( lowess(y˜x,f=6/10), col = ' blue ' )
> curve(.6 ∗x^3 + 13, col = ' brown ' ,add=TRUE)
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Automated Residual Plots
The function residual.plots automates the process of plotting residuals

and computing significance tests for departure from linearity. It can produce
a variety of plots, but in the case of bivariate regression, the key plots are the
scatter plots of residuals vs. x, and residuals vs. fitted values. We’ll just present
the former here, but the latter becomes a vital tool in multiple regression.

The software also generates a statistical test of linearity, which is, of course,
resoundingly rejected, and computes and plots a quadratic fit as an aid to visu-
ally detecting nonlinearity.

> res idual .p lots (fit.linear , f i t ted =FALSE)

Test stat Pr(>|t|)

x 15.71049 2.889014e-33
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Weisberg discusses a statistical test of the null hypothesis of homogeneity of
variance.

Departures from equality of variance will result in rejection of the null hy-
pothesis.

Test of Constant Variance
Below, we recreate some data from a previous lecture.

> set.seed (12345) ## seed the random generator

> X ← rnorm(200)

> epsilon ← rnorm(200)

> b1 ← .6

> b0 ← 2

> Y ← exp(b0 + b1 ∗ X) + epsilon

Test of Constant Variance
If we have loaded the car library, we can create a useful plot of the data in

one line with the scatterplot function. This gives you the data, the linear fit,
the lowess fit, and boxplots on each margin.

> scatterplot (X,Y)
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Test of Constant Variance
The nonlinearity is obvious in the residual plot:

> linear.fit ← lm(Y˜X)

> res idual .p lots (linear.fit , f i t ted =F)

Test stat Pr(>|t|)

X 29.80535 6.282086e-75
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Test of Constant Variance
As before, we transform Y to log(Y ) and refit.

> log.Y ← log(Y)
> log.fit ← lm(log.Y ˜ X)

> scatterplot (X, log.Y)
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Test of Constant Variance
The residual plot and attached significance test shows that we have gotten

rid of the nonlinearity, but the visual appearance strongly indicates non-constant
variance.

> res idual .p lots (log.fit , f i t ted =FALSE)

Test stat Pr(>|t|)

X -0.8910355 0.3739971
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This is confirmed by the test of constant variance.

> ncv.test (log.fit)

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 147.5030 Df = 1 p = 0

3 Transformation to Linearity: Rules and Prin-
ciples

Transformation Rules
Weisberg cites several rules and principles for transforming relationships to

linearity, and in his ground-breaking work with Cook, he has provided a number
of very useful tools for automating the transformation process.

In their book, Applied Regression Including Computing and Graphics, Cook
and Weisberg present specialized free software for plotting data and linearizing
the relationship by means of x-axis and y-axis “sliders,” that allow you to move
x and/or y up or down the transformation ladder.
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Transformation Rules
In discussing transformation of variables, Weisberg mentions two rule, the

log rule and the range rule.

The Log and Range Rules

• The log rule. If the values of a variable range over more than one order of
magnitude and the variable is strictly positive, then replacing the variable
by its logarithm is likely to be helpful.

• The range rule. If the range of a variable is considerably less than one
order of magnitude, then any transformation of that variable is unlikely
to be helpful.

Cook and Weisberg discuss applying Box-Cox transformations to either the
y or x variable, or both. They mention two additional easy-to-remember rules
that can make manipulating the value of λ more straightforward. Their rules
are:

Spread Rules

• To spread the small values of a variable, make the power λ smaller.

• To spread the large values of a variable, make the power λ larger.

The Yeo-Johnson Family
The Box-Cox transformation family requires that data be positive. One

approach to fixing non-positive data is simply to add a constant. We employed
this approach earlier, but another more sophisticated approach is available, i.e.,
the Yeo-Johnson transformation family.

The Yeo-Johnson Family
The modified Box-Cox family ψM (Y, λy) for a variable Y is a simple modi-

fication of the Box-Cox family:

ψM (Y, λy) =

{
gm(Y )1−λy × (Y λy − 1)/λ λy 6= 0
gm(Y )× log y λ = 0

(1)

where gm is the geometric mean, gm(Y ) = exp((
∑
i log yi)/N).

The Yeo-Johnson family is

ψY J(U, λ) =

{
ψM (U + 1, λ) U ≥ 0
ψM (−U + 1, 2− λ) U < 0

(2)

Figure 7.9 from Weisberg shows some plots comparing the Box-Cox and
Yeo-Johnson family transforms for some values of λ.
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Automated Transformation Software
The rules and principles discussed above can be very useful for arriving at

a suitable transformation, especially when used in conjunction with the Arc
freeware package.

Weisberg also discusses software for applying several classes of power trans-
formations to both the independent and dependent variable.

Automated Transformation Software
As an example, consider the data that we just log-transformed, resulting in

linearity, but a substantially non-constant variance.
In such situations, one has several options, with different authors taking

somewhat different positions. For example, Weisberg mentions 4 options in his
section 8.3.

These include use of a variance-stabilizing transformation and doing nothing.

In the latter case, estimates will still be unbiased, although somewhat less
efficient. The standard error of estimate can no longer be used to construct
confidence intervals, but bootstrapping can be employed.

11



Variance Stabilizing Transformations
Weisberg lists some common variance-stabilizing transformations in his Ta-

ble 8.3.
In this case, however, an alternate transformation of X would have worked

better than the log transform we employed. In the code below, we search for
a Yeo-Johnson transformation. The code generates by default plots of λ =
−1, 0, 1, and also finds and plots the best linearizing λ.

We apply the inv.response.plot function to the linear.fit object we
obtained previously.

> inv.tran.plot (X,Y, family="yeo.johnson")

lambda RSS

1 2.066115 190.6161

2 -1.000000 6195.6576

3 0.000000 4231.4799

4 1.000000 1418.8249
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Automated Transformation Software
We can then use the powtran function to apply the transformation to X.

The residual plot looks pretty good!

> power.trans.X ← powtran(X,lambda =2.066115 , family="yeo.johnson")

> yeo.johnson.X.fit ← lm(Y ˜ power.trans.X)

> res idual .p lots (yeo.johnson.X.fit , f i t ted =FALSE)

Test stat Pr(>|t|)

power.trans.X 1.057358 0.2916433

13



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

−1 0 1 2 3 4 5 6

−
3

−
2

−
1

0
1

2

power.trans.X

P
ea

rs
on

 R
es

id
ua

ls

Automated Transformation Software
At least the non-constant variance test no longer rejects at the .05 level. (All

the standard caveats about accepting the null apply here, of course.)

> ncv.test (yeo.johnson.X.fit)

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 3.712164 Df = 1 p = 0.0540173

4 Evaluation of Outliers

4.1 The Lessons of Anscombe’s Quartet

Anscombe’s Quartet
A famous example in the regression literature was provided by Anscombe,

who presented 4 data sets with identical means, variances, and covariances, but
very different looking scatterplots. These data came to be known as Anscombe’s
Quartet.
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Anscombe’s Quartet

> data(anscombe)
> attach(anscombe)
> par(mfrow=c(2,2))
> plot(x1,y1)
> abline(lm(y1˜x1), col = ' red ' )
> plot(x1,y2)
> abline(lm(y2˜x1), col = ' red ' )
> plot(x1,y3)
> abline(lm(y3˜x1), col = ' red ' )
> plot(x2,y4)

> abline(lm(y4˜x2), col = ' red ' )
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Anscombe’s Quartet
We see in the quartet some important aspects of regression. One point can

have a powerful influence on a fit function, and data can have identical linear fit
without being linear. All the data sets have identical R2 values. For example:

> summary(lm(y1˜x1))

Call:

lm(formula = y1 ~ x1)
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Residuals:

Min 1Q Median 3Q Max

-1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 *

x1 0.5001 0.1179 4.241 0.00217 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170

Anscombe’s Quartet
In the following sections we shall briefly discuss aspects of outlier phenomena

and outlier detection.

The discussion is relatively simple in two dimensions, but quickly becomes
much more complicated in the context of multiple regression.

4.2 Leverage

Leverage
An observation can be unusual, but not have much or any effect on a linear

regression fit line.

So we must distinguish between observations that are unusual and those
that are influential.

Leverage
In general, to be influential, an observation has to be unusual.

However, an observation can be unusual without being influential.

Leverage
Leverage is a measure of how unusual an observation is.
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